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Constraint Satisfaction Problems (CSPs)

A binary constraint satisfaction problem consists of

• A set of n variables {x1, x2, …, xn} with respective finite
domains D1, D2, …, Dn

– let  D = D1 ∪  D2 ∪  … ∪  Dn

– let d be the size of the largest domain

• A set of e binary constraints {Cij }

–  Cij  represents a constraint between variables xi and xj

specifying the set of legal pairs of values

– assume that Cij (u, v)  = Cji (v, u)
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Constraint graph

A constraint graph is a directed graph with n nodes and e edges

• Each variable is a node

• Each constraint Cij is an edge from node xi to node xj

Variables {x1, x2, x3, x4, x5}

Constraints

– C31 = {( a,b), (a,c), (b,c)}

– C32 = {( a,b), (a,c), (b,c)}

– C34 = {( a,b), (a,c), (b,c)}

– C35 = {( a,b), (a,c), (b,c)}

– C54 = {( a,b), (a,c), (b,c)}
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x2

x5

{ a, b, c} { a, b, c}

{ a, b}

{ a, b}{ a, b}
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Backtrack search

procedure bcssp(n)

consistent = true

i = initialize()

loop
if consistent then (i, consistent) = label(i)

else (i, consistent) = unlabel(i)

if  i > n  then return “solution found”

else if  i = 0  then return “no solution”

endloop
end bcssp
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Chronological backtracking: initialize

function initialize()

for   i = 1  to  n

CDi = Di /* initialize current domains  */

endfor
return  1 /* return the first variable */

end initialize
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Chronological backtracking: label

function bt-label(i)
for  each vk ∈   CDi  do

Set  xi = vk    and   consistent = true

for  j  from 1 to  i–1  do /* Previously assigned variables*/

if  ¬ Cij(xi, xj)  then
Remove vk from CDi   and set  consistent = false

Unassign xi and break inner loop

endif
if   consistent then  return (i+1, true)

endfor
return  (i, false)
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Chronological backtracking: unlabel

function bt-unlabel(i)

h = i – 1 /* Backtrack to previous variable */

CDi = Di

Remove current value assigned to xh from CDh

Unassign xh

if   CDh  is empty then
return  (h, false)

else
return (h, true)

end bt-unlabel
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Example

a b c

c aba cb a cb

ba ba bababa
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Arc consistency

• An arc (i, j) in a constraint graph G is arc consistent with
respect to domains Di and Dj iff

∀  v ∈   Di,  ∃  w ∈  Dj  : Cij(v, w)

– A graph G is arc consistent iff all its arcs are arc consistent

• Let P = D1 × D2 × … × Dn  and P′ = D ′
1 × D′

2 × … × D′
n  s.t.

P ⊇   P′ .   P′ is the largest arc consistent domain for G in P iff

– G is arc consistent wrt P′

– there is no P′′ such that P ⊇   P′′ ⊃   P′  and G is arc
consistent wrt P′′

• Theorem: The largest arc consistent domain exists and is
unique
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AC-5

• AC-5 is a generic arc consistency algorithm

– uses two abstract procedures ArcCons and LocalArcCons

– can be specialized to either AC-3 or AC-4

– can be specialized to exploit properties of constraints (e.g.,
functional, anti-functional, monotonic constraints)
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Queue elements in AC-5

• AC-5 maintains a queue of elements of the form ((i, j), w)

– (i, j) is an arc, and w is a value in Dj that has been removed
justifying the need to reconsider arc (i, j)

– Enqueue(j, ∆, Q) inserts all elements of the form ((i, j), w)
onto the queue Q such that (i, j) is an arc and w ∈  ∆

j

i

k

∆ removed from Dj in making
Cjk consistent
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ArcCons  and LocalArcCons

function  ArcCons(i, j)
Returns ∆ = { v ∈  Di | ∀ u ∈   Dj ¬Cij(v, u) }

– Removing elements in ∆ from Di  makes (i, j) arc consistent

function  LocalArcCons(i, j, w)

Assumes that w has been removed from Dj

Returns ∆ such that  ∆2 ⊇ ∆ ⊇ ∆ 1 where

∆1 = { v ∈  Di |Cij(v, w) and  ∀ u ∈   Dj ¬Cij(v, u) }

∆2 = { v ∈  Di | ∀ u  ∈   Dj ¬Cij(v, u) }
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Arc consistency with AC-5
procedure AC-5(G)

InitQueue(Q)

for each (i, j) ∈   arc(G) do
∆ = ArcCons(i, j)

Enqueue(i, ∆, Q)

Remove(∆ , Di)

endfor
while not EmptyQueue(Q) do

((i, j), w) = Dequeue(Q)

 ∆ = LocalArcCons(i, j, w)

Enqueue(i, ∆, Q)

Remove(∆ , Di)

endwhile

end AC-5
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Counting queue operations in AC-5

• Introduce the Status of (edge, value) pairs such that

– InitQueue sets Status((k, i), v) = present if v in Di

    = rejected otherwise

– Enqueue sets the Status of each queued item to suspended

– Dequeue sets the Status of dequeued item to rejected

• AC-5’s loops preserve the invariant that Status((k, i), v)
= present iff     v in Di

=  suspended iff     v not in Di  and ((k, i), v)  on the Q
= rejected iff     v not in Di  and ((k, i), v) not  on the Q

⇒ AC-5 enqueues and dequeues at most O(ed) items



CS227, Handout #3Nayak

AC-3

• For arbitrary constraints ArcCons is O(d2)

• AC-3 is essentially AC-5 in which LocalArcCons is
implemented using ArcCons

⇒ AC-3 is O(ed3)
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AC-4

• If ArcCons is O(d2) and LocalArcCons is O(d)then AC-5 is O(ed2)

• LocalArcCons(i, j, w) iterates through the “supports list” of w for
edge (i, j), decrements “support counts”, and computes ∆ as the
set of values whose “support counts” go to 0

⇒ LocalArcCons is O(d) and ArcCons is O(d2) so AC-4 is O(ed2)

O(d2)

O(d)

O(d2)

O(d2)

i j

u
v
w

u   { u}
v   { u, v}
w   { v, w}

2
2
1

Support
counts

Support
list

Time per edge
Space per edge
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Functional constraints

• A constraint C is functional wrt a domain D iff for all v ∈   D
there exists at most one w ∈   D  such that C(v, w)

function ArcCons(i, j)

∆ = {}

for each  v ∈  Di  do

if fij(v) ∉   Dj then  ∆ = ∆ ∪  {v}

return   ∆
end ArcCons

function LocalArcCons(i, j, w)

if fji(w)  Di  then return { fji(w)}

else return {}

end LocalArcCons

ArcCons is O(d)
LocalArcCons is O(1)

AC-5 is O(ed)
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Classes of constraints

• Other classes of constraints for which AC-5 is O(ed)

– anti-functional

– monotonic

– piecewise functional

– piecewise anti-functional

– piecewise monotonic


